Anonimo
Anonimo ha chiesto in Matematica e scienzeMatematica · 1 mese fa

Siano E = { (x,y) di R^2 : 0 <= y <= -x^6 + 64 } ed f una funzione di classe C(R^2)?

Scrivere l'integrale doppio di f su E usando le formule di riduzione, considerando prima E come dominio normale rispetto all'asse x e poi come dominio normale rispetto all'asse y.

Per quanto rigurda scrivere l'integrale normale rispetto all'asse x, vedo che y=-x^6 + 64 è una parabola orientata verso il basso e che interseca l'asse delle x nei punti -2 e +2. Posso quindi dire che

E={ (x,y) di R^2 : -2 <= x <= 2, 0 <= y <= -x^6 + 64 }

e scrivere facilmente la formula di risoluzione dell'integrale.

Per quanto riguarda scrivere l'integrale normale rispetto all'asse y, vedo che la y varia tra 0 e 64, mentre per la x posso dire che

-x^6 + 64 >= y

x^6 <= 64 - y

-(64-y)^(1/6) <= x <= -(64-y)^(1/6)

Posso quindi dire che

E={ (x,y) di R^2 : 0 <= y <= 64, -(64-y)^(1/6) <= x <= -(64-y)^(1/6)}

E' corretto ?

2 risposte

Classificazione
  • Name
    Lv 5
    1 mese fa
    Risposta preferita

    Si, è corretto.                       

  • Non lo potevi chiedere di pomeriggio?

    Io non provo nemmeno a leggerlo tutto. 

    Algernop Krieger 

Altre domande? Fai una domanda e ottieni le risposte che cerchi.